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Abstract

We explored the application of four different deep learn-
ing architectures: Multi-Layer Perceptron (MLP), Long
Short Term Memory (LSTM), Convolution Neural Network
(CNN), and a CNN-LSTM combination to predict the price
trend direction of the next minute’s closing price using 18
technical indicators represented as a 2D image-like matrix.
These indicators were calculated using pricing data over a
High-Frequency time frame of one-minute intervals.

The MLP, LSTM, and CNN-LSTM models when tuned
and trained, resulted in a better prediction accuracy versus
2 out of 3 of our reference papers. Our results demonstrated
the effectiveness of LSTM archictectures on financial pre-
diction tasks as well as the relative effectiveness of a simple
Deep MLP architecture. These results might be applicable
to a short term time frame trading-algorithm considering
the high volatility of the cryptocurrency exchanges in intra-
day time-frames.

1. Introduction/Background/Motivation

Predictive models in finance is a continuously improv-
ing field as people and companies try to incorporate the
relentless advancements in AI and Machine Learning
into their models. This field presents several challenges
particularly in the areas of noisy time-series data and the
inherent unpredictability of the market.

Predictive models in cryptocurrency is a newer and
growing field; most research in this field has been con-
ducted since 2018. To the best of our knowledge, Lahmiri
and Bekiros [11] published the first predictive price model
for cryptocurrencies in January 2018. They compared
several models for different cryptocurrencies and found

that the LSTM was the most accurate model. This was
also the first publication that we have found which applies
LSTM’s to cryptocurrency prediction. Also in 2018, a
model was proposed using a 7-layer fully-connected neural
network which found to outperform a simple ”buy-and-
hold” strategy [13]. In September 2019, high-dimensional
technical indicators were used successfully to categorize
bitcoin price movements into percent-change ranges [5].
The challenges in predicting cryptocurrency price move-
ments are the similar to the challenges posed by stock price
prediction algorithms, however cryptocurrencies’ can be
plagued with more noise, drastic price movements, and
inconsistent volumes.

The scope of this project is to build and evaluate various
models to predict the direction of the next minute’s closing
price in a high frequency environment. Our objective is to
get a good classification measure comparable to the most
recent papers published about Bitcoin trend prediction.
This research also focuses on the implementation and
comparison of neural network architectures to better
understand and evaluate their performances compared to
each other in predictive tasks on cryptocurrency pricing
data. Our work is based off of and expands upon the work
of Alonso-Monsalve et al. (2020) [1]. We compare and
evaluate their Multi-Layer Perceptron (MLP), Convolu-
tional Neural Network (CNN) and CLSTM (which we
called CNN-LSTM for clarity) architectures. We have
modified the architectures set forth by Alonso-Monsalve
et al. to obtain higher performance in our experiments and
additionally implemented and evaluated a vanilla LSTM
for comparison.

If this project succeeds, providing reliable predictions,
it can open the possibility of implementation with a com-
plete trading algorithm of buy and sell signals including
integration into a trading system and money management
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strategies.
The market cap of cryptocurrencies exceeds $3 trillion

and cryptocurrencies are a rapidly growing asset with many
technological and financial applications. High-Frequency
Trading (HFT) can play an important part in regulating
these markets by reducing volatility and increasing liquidity
[7]. Additionally, there are much broader implications
to any architectural discoveries made in this research.
CNN-LSTM’s have been used for a variety of different
applications from Image Captioning [2] to Covid X-Ray
diagnostics [6] and breakthroughs in one area can poten-
tially be applied to any other.

2. Data Processing
2.1. Data Pre-Processing

The time series pricing data was acquired from Bitstamp,
which collects cryptocurrencies pricing data from the ex-
changes. The OHLC (Open/High/Low/Close) pricing data
used in this project uses 1-minute bar data. We selected Bit-
coin as most popular cryptocurrency for this project. The
data sampled ranges from 1st of January 2020 to Septem-
ber 30th 2020 with a total of 391,681 records. This sample
is enough to represent differen different upward and down-
ward trends that will help to train a model to be applicable
in a short-term.

Using the raw pricing data, for each minute interval,
we compute various technical indicators, shown in Fig 1.
These are commonly used in High-Frequency trading [9].
We used the Technical Analysis Library in Python to gener-
ate the technical indicator features. All the data was normal-
ized using z-score normalization after the indicators were
calculated.

Figure 1. Technical Indicators used as features to generate image-
like data. Formulas as reported in Kara et al. [9]

The minute level data is converted to a 2-dimensional
matrix where each row is a point in time and each column is
a technical indicator. We use a time window of 15 minutes
and a total of 18 indicators per sample. The figure 2 shows
a sample of the image-like data for sequential images. The
label or ”Trend” is calculated based on the price in the next
minute after last time step within the image. If the price for
the next minute goes up, then the value is 1. Otherwise, the
trend label value is 0.

Figure 2. Example of sequential window-like 2D images. This
sample uses a sequence of 7 minutes x 6 features or technical in-
dicators.

2.2. Dataset Separation

After generating the 2-D image-like dataset, we sepa-
rated it into three sets: Training (70%), Validation (15%)
and Testing (15%) for independent cross validation [4]. In
order to achieve more representative datasets [15], we split
the data into 2 windows, and each window was split into
training, validation, and testing. Figure 3 shows the cross
validation dataset splits into 3 windows for illustration pur-
poses, however it is important to note that our dataset was
split into 2 not 3 windows.

Figure 3. Data partition of the sample into training, validation and
testing.

We checked the distribution of the calculated labels and
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it is well balanced as shown in the table 1.

Dataset Label Bitcoin Baseline
Train 1 48.64%

0 51.36%
Validation 1 48.95%

0 51.05%
Test 1 50.0%

0 50.0%

Table 1. Breakdown of 2-D image-like patterns classes for train-
ing, validation and testing set. The patterns computed at 1-minute
interval for the period Q1 2020 to Q3 2020.

3. Approach

3.1. Approach Overview

What did you do exactly? How did you solve the prob-
lem? Why did you think it would be successful? Is anything
new in your approach?

Using the same dataset, we trained four separate models:
An MLP, LSTM, CNN, and CNN-LSTM. The variety of ar-
chitectures enabled us to evaluate multiple different models
for effectiveness, helping ensure that at least one achieved
satisfactory results. Additionally, this approach gave us sig-
nificantly more insight into the architectures themselves and
the benefits and drawbacks of each. As mentioned previ-
ously, this work was based off of and inspired by the work
of Alonso-Monsalve et al. (2020) [1]. To expand upon
their work we implemented an LSTM, which was a criti-
cal addition as this model actually performed the best. We
also made several changes to the CNN-LSTM architecture,
which is elaborated on in Section 4.4.

All models end in a Sigmoid activation function and re-
turn a scalar output between 0 and 1. This number repre-
sents the probability that the ”Trend” is 1, meaning a price
movement upwards next minute. The output is rounded
and the model is correct if the rounded output equals the
”Trend” for the next minute.

All models used a Binary Cross-Entropy Loss Function
and an Adam optimizer. We chose to use an Adam opti-
mizer because we anticipated there to be some noise in the
data. Adam maintains a decaying average of the previous
gradients, which factors into the update step. This helps
smooth the updates and reduce the effect of noisy gradi-
ents. Additionally, we were able to utilize the weight-decay
parameter for the Adam optimizer, which is similar to L2
regularization in Stochastic Gradient Descent. This signif-
icantly reduced over-fitting in the CNN-LSTM and LSTM
models.

The architecture-specific and implementation details of
each model are further described in Section 4.

3.2. Challenges

There were several challenges that we had to overcome
in order to successfully train these models. One problem
that we anticipated was noise in the data. The cryptocur-
rency market is prone to high volatility and sharp price
movements. Therefore, we decided to use technical indi-
cators instead of raw pricing data as the inputs to our model
to reduce noise and smooth price curves [14]. Addition-
ally, a relatively unique challenge to cryptocurrency pric-
ing data is that the price increases/decreases over time can
be very large. This may present challenges when normal-
izing data over long periods of time. In our case, mostly
all price-related data, such as moving averages, had nega-
tive z-scores at the beginning of the time frame, while the
data at the latter end of the time frame had positive z-scores.
We debated and experimented with sigmoid, tanh estimator,
and min/max scaling normalization methods in order to de-
termine the most suitable method for this project. These all
had equivalent to or worse performance than z-score nor-
malization. Additionally, much of the research that we con-
ducted used z-scores. Since the model should mainly be
focused on the change in time-series data rather than the
number itself, we concluded that it would not impact the
performance of the model to use z-score normalization.

Another issue that we encountered was that training
these models was quite difficult. Small changes to hyper pa-
rameters could have large impacts in the results, including
the model getting stuck in local minima where it chooses ei-
ther ”1” or ”0” for all values. This is something that had to
be trained around using carefully chosen learning rates and
regularization. An example of this was the weight-decay
in the Adam optimizer. While this reduced over-fitting in
our model, larger values resulted in the model predicting
all zeros. Other papers which ran into over-fitting issues
like [10] and [1], used higher dropout rates and other tech-
niques, which severely impacted our model.

4. Experiments and Results:

All experiments were performed using the Pytorch
Framework in Google Colab Notebooks running a GPU
and High RAM configurations.

We used testing accuracy average to quantitatively mea-
sure the results of our experimentation. We additionally
calculated the loss and the Confusion matrix for each
model to ensure that the model was training properly. We
assessed the Loss and Accuracy curves throughout the
training process to tune the hyperparameters, looking for
issues such as over-fitting or the model not learning quickly
enough. The Loss and Accuracy curves of each model can
be found in Appendix A and the Confusion matrix for each
model can be found in Appendix C.

All models used a batch size of 100, were trained for
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40 epochs, and had the following hyperparameters tuned:
learning rate, dropout, and Adam weight-decay. The
CNN-LSTM was also tuned for the kernel size, number of
convolutions, and number of fully connected layers. All
models used a Binary Cross-Entropy Loss Function and an
Adam optimizer.

The hyperparameters and other variables mentioned
above are not learnable parameters and were tuned before
the start of each trial run. The learnable parameters for the
models were the bias units, weights in a fully-connected
layer, the weight matrix in an LSTM, and the kernel
weights in each convolution.

4.1. Experiments and Results: MLP

We trained an MLP model with 2 hidden layers, where
each hidden layer has 64 nodes, followed by a Relu activa-
tion and a dropout layer with rate 0.2. Then it pass through
the output layer with 1 output dimension and followed by a
sigmoid layer. As shown in Figure 4.

Figure 4. MLP architecture diagram.

We used cross entropy as our loss function, and used
Adam optimizer to optimize the MLP model. We used ac-
curacy and confusion matrix to evaluate the model’s perfor-
mance.

During the training, the batch size is 100, and the learn-
ing rate is initialised as 0.0001, with 0.001 weight decay.
We trained the model on the training dataset for 40 epochs.
In each epoch, we evaluated the model on the validation
dataset. Then we save the model with the best validation
performance.

Figure 10 in Appendix A shows the learning curves of
the MLP model. Both training curves look good, but the
validation curves are oscillated. The highest accuracy is
58.38% on the validation dataset, and is 57.69% on the test-
ing dataset. It is much higher than the MLP model in [1],
and is competitive with their LSTM and CLSTM models.

Table 4 in Appendix C shows the normalized confusion
matrix on the testing dataset. We can see that our MLP
mode correctly predict 62.16% of negative samples, and
53.14% of positive samples. Our MLP works better on the
falling market.

4.2. Experiments and Results: LSTM

We obtained an average testing accuracy of 57.46%,
which is a measure of success compared with the accuracy
obtained in [8] for similar architectures. It also surpasses
the baseline accuracy given in Table 1.

Experimentation begun with a simple LSTM architecture
to start different hyper-parameters and architectures. Batch
normalization layers were added to the model, even though
it did not improve the accuracy in the validation nor testing
sets. Another experiment included additional LSTM layers,
the best results were given when adding two LSTM layers.
The optimization method selected is Adam with a learning
rate of 0.001 and weight decay of 0.001.
The height of the image was another parameter that we
could change. The height or time length of 15 was used for
the training and higher values of 30 or 60 did not improve
the measures. The figure 5 shows the final network archi-
tecture configured for the maximum average testing accu-
racy.

Figure 5. Selected LSTM architecture to predict Bitcoin Trends.

Figure 11 in Appendix A show the loss and accu-
racy curves generated by the training with the best hyper-
parameter configuration.

4.3. Experiments and Results: CNN

Using CNN layers with no memory or recurrent layers
and only considering the current time’s financial indicators
did not yield results above the benchmark. The CNN model
was only able to achieve an average testing accuracy of
51.14%. Qualitatively, the Loss and Accuracy curves 12
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show that the model was not learning very well. Addition-
ally, the accuracy of the validation set was decreasing while
the training accuracy was increasing, which suggests that
this model was over-fitting.

Figure 6. CNN Architecture Diagram.

Figure 7. CNN Dimensions and Kernel Sizes.

While different hyper-parameters led to different loss
and accuracy curves the accuracy never eclipsed the bench-
mark. Most experiments yielded the best validation loss
very early in the training, specifically before the 6th epoch,
after which the training and validation loss would diverge.
This over-fitting was very difficult to overcome. Different
dropout strategies, learning rates, and regularizations would
help with the problem of over-fitting, however they did not
help with the overall performance of the models accuracy.
From this we can derive the outcome that this CNN model
with no recurrence was not a good model for Bitcoin price
prediction. The shortcomings of our CNN implementation
are further elaborated upon in the Conclusions.

4.4. Experiments and Results: CNN-LSTM

While this model was inspired by the CNN-LSTM
model described by Alonso-Monsalvo et al. [1], we made
several modifications which we found to increase its per-
formance over our implementation of their original model.
First, we used vertical and horizontal kernels instead of

the 1x1 kernels, used in their paper. Alonso-Monsalvo et
al. used these filters for their vanilla CNN implementation,
however due to resource restrictions, did not use it in
their hybrid model. We thought these kernels would add
more utility to the CNN portion of the architecture and
that the horizontal kernels would capture multi-indicator
relationships that the LSTM would not be as adept at
identifying. Secondly, we used a 2-layer LSTM, similar to
[15], which we found to be more effective than the original
1-layer LSTM. Using two layers allows the model to more
accurately identify temporal features. Lastly, we reduced
the number of fully-connected layers from 8 (excluding
the output layer) to 3. This was done to help combat
over-fitting in the model. The architecture used for the final
results of the CNN-LSTM is shown in Figure 8 and the
configuration is shown in Figure 9.

Figure 8. CNN-LSTM Architecture Diagram.

Figure 9. CNN-LSTM Dimensions and Kernel Sizes.

Quantitatively, it returned a test accuracy of 57.3%
which is quite similar to the accuracy of the vanilla LSTM.
We found the accuracy of the CNN-LSTM to be compa-
rable to other results conducted on these architectures for
cryptocurrency prediction. Our results were even able to
outperform most studies in this field. The three studies
we found with similar experimentation reported accuracies
of 61%, 55%, and 51% by Alonso-Monsalvo et al. [1],
Livieris et al. [12], and Qiang and Shen [15], respectively.
While these accuracies may seem low compared to the
accuracy of deep neural networks in other tasks, these
accuracies are expected and reasonable for predicative
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Average Testing Accuracy (Bitcoin)
MLP 57.84%
LSTM 57.55%
CNN 51.14%
CNN-LSTM 57.29%

Table 2. Average Testing Accuracy comparison for the best models
trained for different deep learning architectures.

price tasks. The market is extremely unpredictable and a
trader making the correct decision 60% of the time will
be very profitable long-term. Qiang and Shen, whose
model had a 51% accuracy still found that their model
outperformed passive investing [15].

This model was prone to over-fitting and although we
achieved high-training accuracy early in our experiments,
the model required a lot of regularization testing to achieve
a satisfactory validation and test accuracy. Batch normal-
ization, dropout, and Adam weight-decay were used to dis-
courage over-fitting. Separate optimizers were used for
each piece of this architecture in order to finer tune hyper-
parameters. Another method to reduce over-fitting which
was out of the scope of this project but could yield interest-
ing results is data augmentation. As far as we know, this has
not been utilized in any price prediction models. We believe
this could be beneficial as data augmentation may force the
model to learn different features in the model and allow the
model to generalize better to the unforeseen market scenar-
ios of the future. Data augmentations that came to mind
were cutout and uniform price adjustments (similar to color-
jitter in an image). These specifically may be applicable to
market data as cutout would encourage the model to train
on more parts of the image (and therefore more indicators),
and price adjustments could make the model more robust to
potentially unseen prices of the future, such as record highs
or record lows. These of course would need to be tested,
along with other augmentations, to determine the validity
of this strategy.

Model Predicted Distribution
MPL 1 45.42%

0 54.58%
LSTM 1 43.57%

0 56.43%
CNN 1 33.91%

0 66.09%
CNN-LSTM 1 45.75%

0 54.25%

Table 3. Distribution of model predictions applied to testing sam-
ples.

5. Conclusions

Our results show that maintaining a lookback period of
time-series data and generation of features using technical
indicators can lead to positive results. We were able to train
multiple models which outperformed models from similar
studies by using technical indicators, purposefully selected
training procedures and tools, and careful hyperparameter
tuning. The small percentages (2+%) in accuracy can rep-
resent the difference between a successful and unsuccessful
trading strategy.

The concept of treating this time series data like images
opens the door for a lot of image-related techniques which
can be applied to time-series data. Examples of this
being image-related architecture or data augmentation
techniques. We believe this overlap between data types
and techniques can have many novel applications in a
number of different time-series related tasks, one of which
is financial predictions.

All models, except the CNN, were able to learn indepen-
dent of the label distribution. The Confusion Matrices in
Appendix C (Tables 4, 5, 6, and 5) show the distribution
of labels predicted by our models when applying on testing
samples. We can verify that the successfully trained models
are not predicting zero-only or one-only values. Instead,
they are able to recognize patterns and predict different
trends. Given the distribution of these predictions, it gives
us the certainty that the models are identifying patterns in
the testing data.

We think the LSTM performed well due to its temporal
memory and its uses as a predictive model in finance
and other fields [3]. While the CNN-LSTM architecture
performed similarly to the LSTM, we believe that it has
the potential to outperform a vanilla LSTM but those
performance improvements would require much more
research.

We do not believe we have utilized the CNN to its fullest
potential yet. The ordering of columns and data augmenta-
tion are two areas that we feel can be further studied and
optimized to maximize the efficacy of the CNN portion.
We believe that the CNN may have performed poorly
due to non-optimal configurations or not enough temporal
focus, which can be corrected via different architectures.
This is an area that may require extensive experimentation
but a CNN may be a beneficial piece to a robust predicative
neural network architecture. That being said, we do not
believe a CNN by itself would outperform an LSTM, even
with the proper configurations. All models were trained
using a short-term date range to predict the next minute
price movement. The dynamics, volatility, and liquidity of
the cryptocurrency markets can limit the implementation or
set of production of similar models.
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Appendices
A. Loss and Accuracy training curves

Figure 10. Loss and Accuracy Curves for MLP model.

Figure 11. Loss and Accuracy Curves for LSTM model.

Figure 12. Loss and Accuracy Curves for CNN model.

Figure 13. Loss and Accuracy Curves for CNN-LSTM model.

B. Raw Dataset
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Figure 14. Bitcoin price from 1/1/2020-9/30/2020.

C. Confusion Matrices

Predict 0 Predict 1
True 0 0.6215 0.3785
True 1 0.4686 0.5314

Table 4. Normalized Confusion Matrix for the MLP Model.

Predict 0 Predict 1
True 0 0.6455 0.3544
True 1 0.5018 0.4981

Table 5. Normalized Confusion Matrix for the LSTM Model.

Predict 0 Predict 1
True 0 0.6722 0.3277
True 1 0.6495 0.3504

Table 6. Normalized Confusion Matrix for the CNN Model.

Predict 0 Predict 1
True 0 0.6154 0.3845
True 1 0.4695 0.5304

Table 7. Normalized Confusion Matrix for the CNN-LSTM
Model.

D. Ethereum

We performed some experiments using a different cryp-
tocurrency: Ethereum. However, the testing accuracy was
not as good as the ones obtained for Bitcoin. This might be
explained due to the illiquidity of the Ethereum exchange,
since a third of the data at the minute level did not any vol-
ume, which produced duplicate data that affected the train-
ing of our models.

E. Work Division
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Student Name Contributed Aspects Details
Hector Villafuerte Research, Data Pro-

cessing, Code Im-
plementation, Report
editing

Research Papers, Process the
datasets, trained and tuned the
LSTM model.

Thomas Passaro Research, Data Pro-
cessing, Code Im-
plementation, Report
editing

Research Papers, Process the
datasets, trained and tuned the
CNN-LSTM model.

Yichao Zhang Research, Data Pro-
cessing, Code Im-
plementation, Report
editing

Research Papers, Process the
datasets, trained and tuned the
MLP model.

Zach Reeve Research, Data Pro-
cessing and Code Im-
plementation

Research Papers, Process the
datasets, trained and tuned the
CNN model.

Table 8. Contributions of team members.
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